Falanqaynta Cluster-ka ee Python
Falanqaynta cluster-ka waa farsamo loo adeegsado in lagu kala saaro xogta kooxo (clusters) iyadoo lagu salaynayo isku ekaanshaha. Python, waxaad u isticmaali kartaa maktabado sida scikit-learn si aad u samayso falanqaynta cluster-ka.
Faa'iidooyinka:
- Waxay kaa caawinaysaa inaad ogaato qaabab qarsoon ee xogta.
- Waxay faa'iido u leedahay suuq-geynta, aqoonsiga macaamiisha, iyo in ka badan.
Tusaale: K-Means Clustering
K-Means waa algorithm caan ah oo loo isticmaalo falanqaynta cluster-ka. Wuxuu u baahan yahay inaad cayimto tirada clusters (K) ee aad rabto.
from sklearn.cluster import KMeans
import numpy as np
# Xogta tusaale
X = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])
# Samaynta K-Means model
kmeans = KMeans(n_clusters=2, random_state=0, n_init='auto')
# Tababarida modelka
kmeans.fit(X)
# Ogaanshaha labels-ka cluster-ka ee xog kasta
labels = kmeans.labels_
# Helitaanka bartamaha cluster-ka
centroids = kmeans.cluster_centers_
print("Labels:", labels)
print("Centroids:", centroids)
Sharaxaada koodhka:
- Waxaan soo dejinaynaa
KMeans algorithm.
- Waxaan abuureynaa xog tusaale ah oo loo yaqaan
X.
- Waxaan samaynaynaa
KMeans model oo leh 2 clusters.
- Waxaan tababaraynaa modelka annagoo isticmaalayna xogta
X.
- Waxaan helaynaa labels-ka cluster-ka iyo bartamaha cluster-ka.
Hababka kale ee Clustering
Waxaa jira habab kale oo badan oo loo isticmaali karo clustering, sida:
- Hierarchical Clustering: Wuxuu abuuraa hierarchy clusters ah.
- DBSCAN: Wuxuu aqoonsadaa clusters iyadoo lagu salaynayo cufnaanta xogta.
Doorashada algorithm-ka saxda ah waxay ku xiran tahay nooca xogtaada iyo hadafkaaga.