Falanqaynta Isdhexgalka (Correlation Analysis) ee Python
Falanqaynta isdhexgalka waa hab lagu cabbiro xidhiidhka ka dhexeeya laba doorsoome. Waxay muujinaysaa sida doorsoome mid u saameeyo doorsoomaha kale. Python, waxaan u isticmaali karnaa maktabado sida NumPy iyo SciPy si aan u samayno falanqayntan.
Tusaale:
Aynu eegno sida loo xisaabiyo isdhexgalka u dhexeeya laba taxane oo xog ah.
import numpy as np
from scipy.stats import pearsonr
# Xogta
x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 4, 5, 4, 5])
# Xisaabi isdhexgalka
correlation, p_value = pearsonr(x, y)
print(f"Isku xidhka Pearson: {correlation}")
print(f"Qiimaha P: {p_value}")
Sharaxaada:
- Waxaan soo dejinay maktabadaha
NumPy iyo pearsonr oo ka socda SciPy.
- Waxaan abuurnay laba taxane oo xog ah,
x iyo y.
- Waxaan u isticmaalnay shaqada
pearsonr() si aan u xisaabino isdhexgalka Pearson iyo qiimaha P.
- Waxaan daabacnay natiijada.
Fahamka Natiijooyinka
Isku xidhka Pearson wuxuu cabbiraa xoogga iyo jihada xidhiidhka toosan ee u dhexeeya laba doorsoome:
- 1: Xidhiidh toosan oo dhammaystiran.
- -1: Xidhiidh taban oo dhammaystiran.
- 0: Ma jiro xidhiidh.
Qiimaha P wuxuu muujinayaa muhiimadda tirakoob ee isdhexgalka. Qiime hooseeya (tusaale, < 0.05) wuxuu tilmaamayaa in isdhexgalku yahay mid muhiim ah.
Isticmaalka Xogta Dhabta ah
Aynu isticmaalno xogta dhabta ah ee ka timaadda faylka CSV.
import pandas as pd
from scipy.stats import pearsonr
# Soo dejiso xogta
data = pd.read_csv('xogta.csv')
# Xisaabi isdhexgalka u dhexeeya laba column
correlation, p_value = pearsonr(data['Column1'], data['Column2'])
print(f"Isku xidhka Pearson: {correlation}")
print(f"Qiimaha P: {p_value}")
Xusuusnow inaad ku beddesho xogta.csv magaca saxda ah ee faylkaaga iyo Column1 iyo Column2 magacyada saxda ah ee columns-kaaga.